

ALIGNMENT OF THE CLIC MAIN LINAC

6th CLIC Advisory Commitee

02-02-11

H. MAINAUD DURAND

SUMMARY

✓ Introduction: required CLIC performances

- \checkmark Status of activity
 - Pre-alignment of components on the supports
 - Support Pre-alignment Network (SPN)
 - Metrologic Reference Network (MRN)
 - Re-adjustment
- ✓ Short term program & expected results by end of 2012
- ✓ R&D planning for the next phase

After computation, for a sliding window of 200 m, the standard deviations of the transverse position of the zero of each component w.r.t a straight fitting line will be included in a cylinder with a radius of a few microns:

- → 14 µm (RF structures & MB quad BPM)
- \rightarrow 17 μ m (MB quad BPM)

Adjustment: step size of the order of 1 μ m

Introduction: general strategy of re-adjustment

Several components will be pre-aligned on supports:

- \rightarrow Along the MB:
 - \rightarrow RF structures on girders
 - → MB quad on interface plate

Degrees of freedom: 3 / 5

→ Along the DB:

→ PETS + DB quad on girders

Girder 3 Girder

DB and MB girders will be interlinked with their extremities, based on so-called cradle. This allows a movement in the transverse girder interlink plane within 3 degrees of freedom ("articulation point between girders"). (Longitudinal direction adjusted thanks to a mechanical guiding).

MB quad is mounted on an interface plate, allowing an adjustment along 5 degrees of freedom (longitudinal position will be positioned manually).

Introduction: general strategy of position determination

SUMMARY

✓ Introduction: required CLIC performances

✓ Status of activity

- Pre-alignment of components on the supports
- Support Pre-alignment Network (SPN)
- Metrologic Reference Network (MRN)
- Re-adjustment
- ✓ Short term program & expected results by end of 2012
- ✓ R&D planning for the next phase

Re-adjustment: status of MB quad support

MB Quad // cam movers

Validation of a SLS type cam mover (1 DOF test bench)

Tested with 3 configurations of bearing and outer rink

Sub-micron repeatability achieved on full stroke with every configuration

Order of 5 improved cam movers → Delivery : 07-Feb-11

Validation of on the 1 DOF test bench

Validation of on a 5 DOF mock-up

Re-adjustment: status of articulation point

Girder	3 Girder
--------	----------

DB and MB girders // linear actuators

Design of a new "articulation point" concept

Validation on the 1 DOF test bench \rightarrow before end of February

Validation on the two beam prototype modules

Determination of the position: feasibility and latest results

Stretched wire & MRN

Main issue: long term stability of a wire

 \bigcirc

(effects of temperature, humidity, creeping effects, air currents)

→ Modelization of the wire using Hydrostatic Levelling Systems (HLS)

but only in the vertical direction

but HLS system follows the geoid which needs then to be known

 \rightarrow studies undertaken concerning the determination of the geoid

Subject of two PhD theses:

« Determination of a precise gravity field for the CLIC feasibility studies » (S. Guillaume)

- « Analysis and modeling of the effect of tides on Hydrostatic Leveling System » (J. Boerez)
 - → Is a stretched wire really straight (radial direction)?

First idea: comparison with a laser beam under vacuum (NIKHEFF)

ightarrow relative inter-comparison this month at CERN

Stretched wire and MRN

Minimum configuration

Algorithm describing the MRN & associated parameters

Stretched wire and MRN

Algorithm describing the MRN & associated parameters

Simulations

25 m 49 m 72 m 95 m 117 m 140 m 0 m Wire #1 Legend Wire #2 WPS Wire #3 Tiltmeter HLS Hydrostatic network Invar metrological plate

One of the objectives : to determine the precision and accuracy of a MRN consisting of overlapping stretched wires.

20000 Monte-Carlo simulations of TT1 wires alignments 0.25 Density of probability 0 0 $P(r \le 10 \ \mu m) = 97.5 \ \%$ Considered CMM standard deviation: $1 \, \mu m$ Mean value: $r = 4.7 \ \mu m$ 0.00 12 0 9 3

Radius of the errors cylinder (µm)

15

- Position & orientation of the metrological plates in \checkmark the coordinate system of the tunnel
- Monte Carlo method using theoretical readings of \checkmark sensors
 - → in 97.5% of the cases, all the pre-alignment errors fit in a cylinder with a radius of 10 μ m.

TT1 facility

Stretched wire and MRN

Results in TT1

13

Precision on a 140 m wire: better than 2 microns over 33 days
 Accuracy: 11 microns in vertical, 17 microns in radial. Can be improved!

Vertical residuals of the 2 longest wires: σ (wire 1) = 1.6 μ m σ (wire 2) = 0.5 μ m

Accuracy of the TT1 network adjusted by the least squares method in vertical: $\sigma = 11 \ \mu m r.m.s$ (27 $\mu m max.$ value)

Subject of a PhD thesis: « Proposal of an alignment method for the CLIC linear accelerator: from the geodetic networks to the active pre-alignment » (T. Touzé)

Sub-micrometric sensors

Issue: WPS sensor fulfilling the requirements

- « absolute measurements » (known zero w.r.t mechanical interface)
- ✓ no drift
- ✓ sub micrometric measurements

Upgrade of an existing WPS

Capacitive based WPS (cWPS)

Resolution: 0.2 μ m Range: 10 x 10 mm Repeatibility: 1 μ m Bandwidth: 10 Hz

Optical based WPS (oWPS)

Parameter	Value
Aperture-CCD	10 mm
Pivot-CCD	10.4 mm
Aperture Diameter	200±5 µm
Aperture Centering	±100 μm
Lens Focal Length	9 mm
Focal Point of Lens to CCD	11 mm
Flat of Lens to CCD	12 mm
CCD Width	3.4 mm
CCD Height	2.4 mm
CCD Pixel Size	10 µm × 10 µm
Field of View	±160 mrad × ±110 mrad
Aperture Height Above End Plate	15 mm
Aperture to Front of CCD Mounting Plate	5 mm

Status of the different sensors technologies

	cWPS	oWPS
Technology	Capacitive	Optical
Accuracy (µm)	7 (TBC)	~ 10 (TBC)
Repeatability (µm)	1	2 (TBC)
Precision (µm)	1	2 (TBC)
Acq. Frequency (Hz)	100	1/sensor
Resistance to radiation	200 kGy (sensor) 500 Gy (remote electronics)	ТВС
Wire	Carbone peek	Vectran
Sag (mm) for 200 m	76.5 mm	45.5 mm
Cost	5 000 CHF	2 000 \$

Status of fiducialisation

Issue: measure 2 m long objects within a few microns

 ✓ First solution: CMM measurements (dimensional control, pre-alignment of components on their supports, fiducialisation), but STATIC

MPE = 0.3 µm + L/1000 (L in mm)

AT 401: maximum offset in the determination of a point in space: \pm 15 μ m + 6ppm (3 σ)

Micro triangulation

 ✓ Alternative solution: combination of measurements from Laser Tracker, measurements arm or micro triangulation in lab and tunnels (control after transport, during tests,...)

SUMMARY

✓ Introduction: required CLIC performances

- \checkmark Status of activity
 - Pre-alignment of components on the supports
 - Support Pre-alignment Network (SPN)
 - Metrologic Reference Network (MRN)
 - Re-adjustment

✓ Short term program & expected results by end of 2012

 \checkmark R&D planning for the next phase

- ✓ Compatibility with stabilization requirements (first Eigenfrequency > 50 Hz) [Q2 2011]
- Feedback for design of the MB quad mock-up type 1 and 4, foreseen for the two beam prototype modules in lab and CLEX [Q3 2011 Q1 2012]

Two beam prototype modules

✓ Validation of the following strategies [Q1- Q3 2011]

- o Pre-alignment of the components on their support within 10 microns, inter-comparison between methods (AT401, micro-triangulation,...)
- o Articulation point : the adjacent extremities of girders follow within a few microns
- o Micrometric adjustment using linear actuators
- Alignment systems providing a determination of the position with micrometric accuracy and precision
 [Q2-Q4 2011]
 - Case of oWPS, cWPS
 - Intercomparison between RASNIK and WPS [Q3-Q4 2011]
- Active pre-alignment: tests of the algorithms [Q2 2011]
- ✓ Feedback concerning schedule, cost, general strategy of installation, and two beam modules in CLEX
- Compatibility with other systems (vacuum, waveguides,...), stability [Q3 2011 Q3 2012]

Knowledge of static geoid

- A theoretical study showed that a determination of gravity field with an accuracy of 0.001 mm over 200m was possible provided dense astro-geodetic and gravimetric measurements
- Confirmed by measurements performed in 2009, every 10 m.
- But extremely fastidious when extrapolated over 40 km...
 - Deflectometer under study, allowing relative measurements of the direction of the vertical in the tunnel.
 - Validation on 12 m [Q2 2011]
 - Extrapolation over 100 m [Design: Q4 2011, tests: Q2-Q3 2012]

Laser based alignment system

As an alternative

Displacement on the CCD

moving object

To validate the stretched wire solution

- ✓ In collaboration with NIKHFF :
 - Design of a long range solution (3 point alignment system, diffraction pattern) 0
 - Inter-comparison of the long range solution in TT1 (140 m) / TZ32 tunnels (500 m) 0 → Relative comparison [Q1-Q2 2011], « absolute » comparison [Q4 2011- Q1 2012]
- LAMBDA project (Laser Alignment Multipoint Based Design Approach)
 - Reference of alignment : laser beam under vacuum 0

The measurement principle:

Lens

- N-point alignment system: sensors distributed along the beam *** Ο
- Speckles are measured on a surface on each point (sensor) usir Ο
- Measurement surface = mechanical or optical shutter 0

Next steps: validate the concept on short distance, without vacuum [Q3 2011], and then 0 validate the concept on longer distance, under vacuum [Q3-Q4 2012].

Consolidation of stretched wire solution

✓ Validation of oWPS & cWPS

- On dedicated calibration benches, once controlled by sub-micrometric CMM [Q2 2011].
- Upgrade of existing sensors [Q3-Q4 2011] and tests on calibration benches [Q1 2012]
- Through inter-comparison on the two beam prototype modules in lab [Q3-Q4 2011]
- Analysis of experimental data of TT1, simulations for beam dynamics [Q2 2011 Q2 2012]

SUMMARY

✓ Introduction: required CLIC performances

- \checkmark Status of activity
 - Pre-alignment of components on the supports
 - Support Pre-alignment Network (SPN)
 - Metrologic Reference Network (MRN)
 - Re-adjustment

✓ Short term program & expected results by end of 2012

✓ R&D planning for the next phase

R&D planning for the next phase

		2011				2012					2	013			20	014		2015				2016
R&D on		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
N (cWPS, S, RASNIK)	Validation on calibration benches																					
	Validation through inter-comparison																					
	Qualification in accelerator environment								-													
8 8	Development of low cost version																					
0	Preparation of industrialization																			<u> </u>		
	Development of laser based alternatives			1			-				-											
	Consolidation of stretched wire solution				-					-												
	Validation of solutions through inter-																					
-	comparison over 140 m			1																		
ARN	Validation of solutions through inter-																					
2	comparison over 500 m										1	1					1					
	Qualification in accelerator environment																					
	Development of low cost version															I						
	Preparation of industrialization																					
\$	Validation on two beam prototype modules in																					
oui	lab		1	1	1																	
E I	Validation on MB quad support mock-up)																		
t so	Adaptation to new designs and new				_																	
en	configurations					I	1	T	T	1												
stm	Qualification in accelerator environment								-			I										
dju	Development of low cost version																					
a,	Preparation of industrialization																					

CONCLUSION

- A global solution proposed for the CDR
- Very promising results concerning simulations and data in the TT1 facility
 next validation: on the two beam prototype modules in lab & CLEX
- R&D program in place in order to find alternative solutions for short range and long range alignment systems.
- ✓ Optimization and development program concerning low cost adjustment systems & low cost sensors